IO的底层原理
IO读写的基础原理
用户程序进行IO的读写,依赖于底层的IO读写,基本上会用到底层的read&write两大系统调用。
- read系统调用,并不是直接从物理设备把数据读取到内存中,是把数据从内核缓冲区复制到进程缓冲区;
- write系统调用,也不是直接把数据写入到物理设备,是把数据从进程缓冲区复制到内核缓冲区。
上层程序的IO操作,实际上不是物理设备级别的读写,而是缓存的复制。read&write两大系统调用,都不负责数据在内核缓冲区和物理设备(如磁盘)之间的交换,这项底层的读写交换,是由操作系统内核(Kernel)来完成的。
内核缓冲区与进程缓冲区
缓冲区的目的,是为了减少频繁地与设备之间的物理交换。外部设备的直接读写,涉及操作系统的中断。发生系统中断时,需要保存之前的进程数据和状态等信息,而结束中断之后,还需要恢复之前的进程数据和状态等信息。为了减少这种底层系统的时间损耗、性能损耗,于是出现了内存缓冲区。
有了内存缓冲区,上层应用使用read系统调用时,仅仅把数据从内核缓冲区复制到上层应用的缓冲区(进程缓冲区);上层应用使用write系统调用时,仅仅把数据从进程缓冲区复制到内核缓冲区中。底层操作会对内核缓冲区进行监控,等待缓冲区达到一定数量的时候,再进行IO设备的中断处理,集中执行物理设备的实际IO操作,这种机制提升了系统的性能。至于什么时候中断(读中断、写中断),由操作系统的内核来决定,用户程序则不需要关心。
在Linux系统中,操作系统内核只有一个内核缓冲区。而每个用户程序(进程),有自己独立的缓冲区,叫作进程缓冲区。所以,用户程序的IO读写程序,在大多数情况下,并没有进行实际的IO操作,而是在进程缓冲区和内核缓冲区之间直接进行数据的交换。
-
用户空间是常规进程所在区域。 JVM 就是常规进程,驻守于用户空间。用户空间是非特权区域:比如,在该区域执行的代码就不能直接访问硬件设备。
-
内核空间是操作系统所在区域。内核代码有特别的权力:它能与设备控制器通讯,控制着用户区域进程的运行状态,所有 I/O 都直接或间接通过内核空间。
系统调用read&write的流程
完整的流程如下:
- 客户端请求:Linux通过网卡读取客户端的请求数据,将数据读取到内核缓冲区。
- 获取请求数据:Java服务器通过read系统调用,从Linux内核缓冲区读取数据,再送入Java进程缓冲区。
- 服务器端业务处理:Java服务器在自己的用户空间中处理客户端的请求。
- 服务器端返回数据:Java服务器完成处理后,构建好的响应数据,将这些数据从用户缓冲区写入内核缓冲区。这里用到的是write系统调用。
- 发送给客户端:Linux内核通过网络IO,将内核缓冲区中的数据写入网卡,网卡通过底层的通信协议,会将数据发送给目标客户端。
IO模型
- 阻塞IO:指的是需要内核IO操作彻底完成后,才返回到用户空间执行用户的操作。阻塞指的是用户空间程序的执行状态。传统的IO模型都是同步阻塞IO;
- 非阻塞IO:指的是用户空间的程序不需要等待内核IO操作彻底完成,可以立即返回用户空间执行用户的操作,即处于非阻塞的状态,与此同时内核会立即返回给用户一个状态值;
- 同步IO:是一种用户空间与内核空间的IO发起方式。同步IO是指用户空间的线程是主动发起IO请求的一方,内核空间是被动接受方;
- 异步IO:是指系统内核是主动发起IO请求的一方,用户空间的线程是被动接受方;
同步阻塞(Blocking IO)
在Java应用程序进程中,默认情况下,所有的socket连接的IO操作都是同步阻塞IO(Blocking IO)。在阻塞式IO模型中,Java应用程序从IO系统调用开始,直到系统调用返回,在这段时间内,Java进程是阻塞的。返回成功后,应用进程开始处理用户空间的缓存区数据。 两阶段一直阻塞。
- 从Java启动IO读的read系统调用开始,用户线程就进入阻塞状态;
- 当系统内核收到read系统调用,就开始准备数据。一开始,数据可能还没有到达内核缓冲区(例如,还没有收到一个完整的socket数据包),这个时候内核就要等待;
- 内核一直等到完整的数据到达,就会将数据从内核缓冲区复制到用户缓冲区(用户空间的内存),然后内核返回结果(例如返回复制到用户缓冲区中的字节数);
- 直到内核返回后,用户线程才会解除阻塞的状态,重新运行起来;
- 特点:在内核进行IO执行的两个阶段,用户线程都被阻塞了。
- 优点:应用的程序开发非常简单;在阻塞等待数据期间,用户线程挂起。在阻塞期间,用户线程基本不会占用CPU资源。
- 缺点:一般情况下,会为每个连接配备一个独立的线程;反过来说,就是一个线程维护一个连接的IO操作。在并发量小的情况下,这样做没有什么问题。但是,当在高并发的应用场景下,需要大量的线程来维护大量的网络连接,内存、线程切换开销会非常巨大。因此,基本上阻塞IO模型在高并发应用场景下是不可用的。
同步非阻塞NIO(None Blocking IO)
进程一直询问IO准备好了没有,准备好了再发起读取操作,这时才把数据从内核空间拷贝到用户空间。 第一阶段不阻塞但要轮询,第二阶段阻塞。
socket连接默认是阻塞模式,在Linux系统下,可以通过设置将socket变成为非阻塞的模式(Non-Blocking)。使用非阻塞模式的IO读写,叫作同步非阻塞IO(None Blocking IO),简称为NIO模式。在NIO模型中,应用程序一旦开始IO系统调用,会出现以下两种情况:
- 在内核缓冲区中没有数据的情况下,系统调用会立即返回,返回一个调用失败的信息。
- 在内核缓冲区中有数据的情况下,是阻塞的,直到数据从内核缓冲复制到用户进程缓冲。复制完成后,系统调用返回成功,应用进程开始处理用户空间的缓存数据。
- 在内核数据没有准备好的阶段,用户线程发起IO请求时,立即返回。所以,为了读取到最终的数据,用户线程需要不断地发起IO系统调用。
- 内核数据到达后,用户线程发起系统调用,用户线程阻塞。内核开始复制数据,它会将数据从内核缓冲区复制到用户缓冲区(用户空间的内存),然后内核返回结果(例如返回复制到的用户缓冲区的字节数)。
- 用户线程读到数据后,才会解除阻塞状态,重新运行起来。也就是说,用户进程需要经过多次的尝试,才能保证最终真正读到数据,而后继续执行。
- 特点:应用程序的线程需要不断地进行IO系统调用,轮询数据是否已经准备好,如果没有准备好,就继续轮询,直到完成IO系统调用为止。
- 优点:每次发起的IO系统调用,在内核等待数据过程中可以立即返回。用户线程不会阻塞,实时性较好。
- 缺点:不断地轮询内核,这将占用大量的CPU时间,效率低下。
IO多路复用模型(IO Multiplexing)
多个连接使用同一个select去询问IO准备好了没有,如果有准备好了的,就返回有数据准备好了,然后对应的连接再发起读取操作,把数据从内核空间拷贝到用户空间。 两阶段分开阻塞。
在IO多路复用模型中,引入了一种新的系统调用,查询IO的就绪状态。在Linux系统中,对应的系统调用为select/epoll系统调用。通过该系统调用,一个进程可以监视多个文件描述符,一旦某个描述符就绪(一般是内核缓冲区可读/可写),内核能够将就绪的状态返回给应用程序。随后,应用程序根据就绪的状态,进行相应的IO系统调用。 目前支持IO多路复用的系统调用,有select、epoll等等。select系统调用,几乎在所有的操作系统上都有支持,具有良好的跨平台特性。epoll是在Linux 2.6内核中提出的,是select系统调用的Linux增强版本。 在IO多路复用模型中通过select/epoll系统调用,单个应用程序的线程,可以不断地轮询成百上千的socket连接,当某个或者某些socket网络连接有IO就绪的状态,就返回对应的可以执行的读写操作。
- 选择器注册。在这种模式中,首先,将需要read操作的目标socket网络连接,提前注册到select/epoll选择器中,Java中对应的选择器类是Selector类。然后,才可以开启整个IO多路复用模型的轮询流程。
- 就绪状态的轮询。通过选择器的查询方法,查询注册过的所有socket连接的就绪状态。通过查询的系统调用,内核会返回一个就绪的socket列表。当任何一个注册过的socket中的数据准备好了,内核缓冲区有数据(就绪)了,内核就将该socket加入到就绪的列表中。当用户进程调用了select查询方法,那么整个线程会被阻塞掉。
- 用户线程获得了就绪状态的列表后,根据其中的socket连接,发起read系统调用,用户线程阻塞。内核开始复制数据,将数据从内核缓冲区复制到用户缓冲区。
- 复制完成后,内核返回结果,用户线程才会解除阻塞的状态,用户线程读取到了数据,继续执行。
- 特点:IO多路复用模型的IO涉及两种系统调用(System Call),另一种是select/epoll(就绪查询),一种是IO操作。IO多路复用模型建立在操作系统的基础设施之上,即操作系统的内核必须能够提供多路分离的系统调用select/epoll。和NIO模型相似,多路复用IO也需要轮询。负责select/epoll状态查询调用的线程,需要不断地进行select/epoll轮询,查找出达到IO操作就绪的socket连接。
- 优点:与一个线程维护一个连接的阻塞IO模式相比,使用select/epoll的最大优势在于,一个选择器查询线程可以同时处理成千上万个连接(Connection)。系统不必创建大量的线程,也不必维护这些线程,从而大大减小了系统的开销。
- 缺点:本质上,select/epoll系统调用是阻塞式的,属于同步IO。都需要在读写事件就绪后,由系统调用本身负责进行读写,也就是说这个读写过程是阻塞的。
信号驱动IO
进程发起读取操作会立即返回,当数据准备好了会以通知的形式告诉进程,进程再发起读取操作,把数据从内核空间拷贝到用户空间。 第一阶段不阻塞,第二阶段阻塞。
应用进程使用 sigaction 系统调用,内核立即返回,应用进程可以继续执行,也就是说等待数据阶段应用进程是非阻塞的。内核在数据到达时向应用进程发送 SIGIO 信号,应用进程收到之后在信号处理程序中调用 recvfrom 将数据从内核复制到应用进程中。信号驱动 I/O 的 CPU 利用率很高。
异步IO模型(Asynchronous IO)
进程发起读取操作会立即返回,等到数据准备好且已经拷贝到进程缓冲再通知进程拿数据。 异步IO模型(Asynchronous IO,简称为AIO)。AIO的基本流程是:
- 用户线程通过系统调用,向内核注册某个IO操作。
- 内核在整个IO操作(包括数据准备、数据复制)完成后,通知用户程序,用户执行后续的业务操作。
在异步IO模型中,在整个内核的数据处理过程中,包括内核将数据从网络物理设备(网卡)读取到内核缓冲区、将内核缓冲区的数据复制到用户缓冲区,用户程序都不需要阻塞。
- 当用户线程发起了read系统调用,立刻就可以开始去做其他的事,用户线程不阻塞。
- 内核就开始了IO的第一个阶段:准备数据。等到数据准备好了,内核就会将数据从内核缓冲区复制到用户缓冲区(用户空间的内存)。
- 内核会给用户线程发送一个信号(Signal),或者回调用户线程注册的回调接口,告诉用户线程read操作完成了。
- 用户线程读取用户缓冲区的数据,完成后续的业务操作。
- 特点:在内核等待数据和复制数据的两个阶段,用户线程都不是阻塞的。用户线程需要接收内核的IO操作完成的事件,或者用户线程需要注册一个IO操作完成的回调函数。正因为如此,异步IO有的时候也被称为信号驱动IO。
- 缺点:应用程序仅需要进行事件的注册与接收,其余的工作都留给了操作系统,也就是说,需要底层内核提供支持。
理论上来说,异步IO是真正的异步输入输出,它的吞吐量高于IO多路复用模型的吞吐量。就目前而言,Windows系统下通过IOCP实现了真正的异步IO。而在Linux系统下,异步IO模型在2.6版本才引入,目前并不完善,其底层实现仍使用epoll,与IO多路复用相同,因此在性能上没有明显的优势。