线程池
概述
ThreadPoolExecutor 是线程池的核心实现。线程的创建和终止需要很大的开销,线程池中预先提供了指定数量的可重用线程,所以使用线程池会节省系统资源,并且每个线程池都维护了一些基础的数据统计,方便线程的管理和监控。
参数
1
2
3
4
5
6
7
| public ThreadPoolExecutor(int corePoolSize,
int maximumPoolSize,
long keepAliveTime,
TimeUnit unit,
BlockingQueue<Runnable> workQueue,
ThreadFactory threadFactory,
RejectedExecutionHandler handler)
|
参数名 |
作用 |
corePoolSize |
核心线程池大小 |
maximumPoolSize |
最大线程池大小 |
keepAliveTime |
线程池中超过corePoolSize 数目的空闲线程最大存活时间;可以allowCoreThreadTimeOut(true) 使得核心线程空闲存活有效时间 |
TimeUnit |
keepAliveTime 时间单位 |
workQueue |
阻塞任务队列 |
threadFactory |
线程工厂 |
RejectedExecutionHandler |
当提交任务数超过maxmumPoolSize +workQueue 之和时,任务会交给RejectedExecutionHandler 来处理; |
流程
- 当线程池小于
corePoolSize
时,新提交任务将创建一个新线程执行任务,即使此时线程池中存在空闲线程;
- 当线程池达到
corePoolSize
时,新提交任务将被放入workQueue
中,等待线程池中任务调度执行;
- 当
workQueue
已满,且maximumPoolSize
>corePoolSize
时,新提交任务会创建新线程执行任务;
- 当提交任务数超过
maximumPoolSize
时,新提交任务由RejectedExecutionHandler
处理;
- 当线程池中超过
corePoolSize
线程,空闲时间达到keepAliveTime
时,关闭空闲线程;
- 当设置
allowCoreThreadTimeOut(true)
时,线程池中corePoolSize
线程空闲时间达到keepAliveTime
也将关闭;
拒绝策略
- AbortPolicy:默认策略,在需要拒绝任务时抛出
RejectedExecutionException
;
- DiscardPolicy:也是丢弃任务,但是不抛出异常;
- DiscardOldestPolicy:丢弃队列中等待时间最长的任务,并执行当前提交的任务,如果线程池已经关闭,任务将被丢弃;
- CallerRunsPolicy:直接在 execute 方法的调用线程中运行被拒绝的任务,如果线程池已经关闭,任务将被丢弃;
线程池状态
- RUNNING:可以接收新的任务和队列任务;
- SHUTDOWN:不接收新的任务,但是会运行队列任务;
- STOP:不接收新任务,也不会运行队列任务,并且中断正在运行的任务;
- TIDYING:所有任务都已经终止,workerCount为0,当池状态为TIDYING时将会运行
terminated()
方法;
- TERMINATED:
terminated()
方法完成执行;
UML图
源码
Worker
ThreadPoolExecutor.Worker
源码:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
| //ThreadPoolExecutor 的内部类,继承自 AQS,实现了不可重入的互斥锁。
//在线程池中持有一个 Worker 集合,一个 Worker 对应一个工作线程。
//当线程池启动时,对应的Worker会执行池中的任务,执行完毕后从阻塞队列里获取一个新的任务继续执行。
//它本身实现了Runnable接口,也就是说 Worker本身也作为一个线程任务执行。
private final class Worker
extends AbstractQueuedSynchronizer
implements Runnable{
private static final long serialVersionUID = 6138294804551838833L;
//工作线程
final Thread thread;
//初始运行任务
Runnable firstTask;
//任务完成计数
volatile long completedTasks;
Worker(Runnable firstTask) {
setState(-1); // inhibit interrupts until runWorker
this.firstTask = firstTask;
this.thread = getThreadFactory().newThread(this);
}
public void run() {
runWorker(this);
}
//0代表解锁状态;1代表锁定状态
protected boolean isHeldExclusively() {
return getState() != 0;
}
//实现AQS方法,尝试获取锁,CAS成功设置独占,返回true
protected boolean tryAcquire(int unused) {
if (compareAndSetState(0, 1)) {
setExclusiveOwnerThread(Thread.currentThread());
return true;
}
return false;
}
//实现AQS方法,尝试释放锁
protected boolean tryRelease(int unused) {
setExclusiveOwnerThread(null);
setState(0);
return true;
}
//获取锁
public void lock() { acquire(1); }
//尝试获取锁
public boolean tryLock() { return tryAcquire(1); }
//释放锁
public void unlock() { release(1); }
//是否锁定
public boolean isLocked() { return isHeldExclusively(); }
//锁定后中断线程
void interruptIfStarted() {
Thread t;
if (getState() >= 0 && (t = thread) != null && !t.isInterrupted()) {
try {
t.interrupt();
} catch (SecurityException ignore) {
}
}
}
}
|
ThreadPoolExecutor
ThreadPoolExecutor
核心属性:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
| public class ThreadPoolExecutor extends AbstractExecutorService {
//ctl封装了两个字段:workerCount(有效线程数)和runState(线程池状态)
//ctl使用低29位表示线程池中的线程数,高3位表示线程池的运行状态
//线程池初始状态为RUNNING
private final AtomicInteger ctl = new AtomicInteger(ctlOf(RUNNING, 0));
//任务线程数量所占的int的位数
private static final int COUNT_BITS = Integer.SIZE - 3;
//最大任务线程数量为2^29-1
private static final int CAPACITY = (1 << COUNT_BITS) - 1;
// runState is stored in the high-order bits
//对应高三位111
private static final int RUNNING = -1 << COUNT_BITS;
//对应高三位000
private static final int SHUTDOWN = 0 << COUNT_BITS;
//对应高三位001
private static final int STOP = 1 << COUNT_BITS;
//对应高三位010
private static final int TIDYING = 2 << COUNT_BITS;
//对应高三位011
private static final int TERMINATED = 3 << COUNT_BITS;
// Packing and unpacking ctl
//运行状态
private static int runStateOf(int c) { return c & ~CAPACITY; }
//运行的任务线程数
private static int workerCountOf(int c) { return c & CAPACITY; }
//封装运行状态和任务线程
private static int ctlOf(int rs, int wc) { return rs | wc; }
//当核心线程数已满,新增任务的存储队列
private final BlockingQueue<Runnable> workQueue;
//线程运行期间的锁,在调用shutdown和shutdownNow之后依然持有
private final ReentrantLock mainLock = new ReentrantLock();
//工作线程池,只有在持有mainLock才存储
private final HashSet<Worker> workers = new HashSet<Worker>();
//awaitTermination的等待条件
private final Condition termination = mainLock.newCondition();
//当前线程池里线程数量
private int largestPoolSize;
//已完成任务数量
private long completedTaskCount;
//线程工厂,所有线程都是用它来创建
private volatile ThreadFactory threadFactory;
//拒绝策略
private volatile RejectedExecutionHandler handler;
//空闲线程存活时间
private volatile long keepAliveTime;
//默认false,表示core线程空闲依然保活;如果为true,使用keepAliveTime确定等待超时时间
private volatile boolean allowCoreThreadTimeOut;
//核心线程池大小
private volatile int corePoolSize;
//最大线程池大小
private volatile int maximumPoolSize;
//默认拒绝策略
private static final RejectedExecutionHandler defaultHandler = new AbortPolicy();
//针对shutdown和shutdownNow的运行权限许可
private static final RuntimePermission shutdownPerm = new RuntimePermission("modifyThread");
}
|
execute()
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
| //提交一个任务到线程池,任务不一定会立即执行。
//提交的任务可能在一个新的线程中执行,也可能在已经存在的空闲线程中执行。
//如果由于池关闭或者池容量已经饱和导致任务无法提交,那么就根据拒绝策略RejectedExecutionHandler处理提交过来的任务。
public void execute(Runnable command) {
if (command == null)
throw new NullPointerException();
int c = ctl.get();
if (workerCountOf(c) < corePoolSize) {
if (addWorker(command, true))
return;
c = ctl.get();
}
//非阻塞式入队
if (isRunning(c) && workQueue.offer(command)) {
int recheck = ctl.get();
if (! isRunning(recheck) && remove(command))
reject(command);
else if (workerCountOf(recheck) == 0)
addWorker(null, false);
}
else if (!addWorker(command, false))
reject(command);
}
|
execute
运行的三种情况:
- 如果正在运行线程少于
corePoolSize
,通过addWorker
方法尝试开启一个新的线程并把提交的任务作为它的firstTask
运行。addWorker
会检查ctl状态的状态(runState
和workerCount
)来判断是否可以添加新的线程。
- 如果
addWorker
执行失败(返回false),就把任务添加到等待队列。这里需要对ctl
进行双重检查,因为从任务入队到入队完成可能有线程死掉,或者在进入此方法后线程池被关闭。所以我们要在入队后重新检查池状态,如果有必要,就回滚入队操作。
- 如果任务不能入队,我们再次尝试增加一个新的线程。如果添加失败,就意味着池被关闭或已经饱和,这种情况就需要根据拒绝策略来处理任务。
addWorker()
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
| private boolean addWorker(Runnable firstTask, boolean core) {
retry:
for (;;) {
int c = ctl.get();
int rs = runStateOf(c);
//检查线程池状态
if (rs >= SHUTDOWN &&
! (rs == SHUTDOWN &&
firstTask == null &&
! workQueue.isEmpty()))
return false;
for (;;) {
//工作线程数
int wc = workerCountOf(c);
//工作线程数是否大于线程池最大容量或是否大于核心线程数
if (wc >= CAPACITY ||
wc >= (core ? corePoolSize : maximumPoolSize))
return false;
//CAS成功,工作线程数+1
if (compareAndIncrementWorkerCount(c))
break retry;
c = ctl.get(); // Re-read ctl
//如果第一次获取的工作线程数和当前获取的不相同跳出
if (runStateOf(c) != rs)
continue retry;
// else CAS failed due to workerCount change; retry inner loop
}
}
boolean workerStarted = false;
boolean workerAdded = false;
Worker w = null;
try {
//创建新的工作线程
w = new Worker(firstTask);
final Thread t = w.thread;
if (t != null) {
final ReentrantLock mainLock = this.mainLock;
//加锁
mainLock.lock();
try {
// Recheck while holding lock.
// Back out on ThreadFactory failure or if
// shut down before lock acquired.
int rs = runStateOf(ctl.get());
//检查线程池状态
if (rs < SHUTDOWN ||
(rs == SHUTDOWN && firstTask == null)) {
//线程已经运行则抛异常
if (t.isAlive()) // precheck that t is startable
throw new IllegalThreadStateException();
workers.add(w);
int s = workers.size();
//更新largestPoolSize
if (s > largestPoolSize)
largestPoolSize = s;
workerAdded = true;
}
} finally {
mainLock.unlock();
}
//成功加入,启动线程
if (workerAdded) {
t.start();
workerStarted = true;
}
}
} finally {
//启动失败,回滚
if (! workerStarted)
addWorkerFailed(w);
}
return workerStarted;
}
|
addWorkerFailed()
1
2
3
4
5
6
7
8
9
10
11
12
13
| private void addWorkerFailed(Worker w) {
final ReentrantLock mainLock = this.mainLock;
mainLock.lock();
try {
if (w != null)
workers.remove(w);
decrementWorkerCount();
//尝试终止线程池
tryTerminate();
} finally {
mainLock.unlock();
}
}
|
runWorker
ThreadPoolExecutor.addWorker()
方法里调用t.start()
时调用runWorker()
。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
| final void runWorker(Worker w) {
Thread wt = Thread.currentThread();
Runnable task = w.firstTask;
w.firstTask = null;
//Worker初始化时设置state为-1,这里设置为0,允许中断,在任务未执行前不允许中断
w.unlock(); // allow interrupts
boolean completedAbruptly = true;
try {
//task不等于null或者阻塞队列中getTask()不等于null
while (task != null || (task = getTask()) != null) {
//加锁
w.lock();
//线程池调用shutdownNow()方法后状态变为STOP
//线程池当前状态为STOP或者当前线程中断且线程池状态为STOP
//且线程还没有中断
if ((runStateAtLeast(ctl.get(), STOP) ||
(Thread.interrupted() &&
runStateAtLeast(ctl.get(), STOP))) &&
!wt.isInterrupted())
//中断Worker线程
wt.interrupt();
try {
//执行前逻辑,自定义实现
beforeExecute(wt, task);
Throwable thrown = null;
try {
//任务运行
task.run();
} catch (RuntimeException x) {
thrown = x; throw x;
} catch (Error x) {
thrown = x; throw x;
} catch (Throwable x) {
thrown = x; throw new Error(x);
} finally {
//执行后逻辑,自定义实现
afterExecute(task, thrown);
}
} finally {
task = null;
w.completedTasks++;
w.unlock();
}
}
completedAbruptly = false;
} finally {
//处理工作线程退出逻辑
processWorkerExit(w, completedAbruptly);
}
}
|
getTask
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
| //从阻塞队列中取任务的方法
private Runnable getTask() {
//队列中取任务是否超时
boolean timedOut = false; // Did the last poll() time out?
for (;;) {
int c = ctl.get();
int rs = runStateOf(c);
//线程池状态>=STOP
//或线程池状态>=SHUTDOWN且队列为空
if (rs >= SHUTDOWN && (rs >= STOP || workQueue.isEmpty())) {
//减少ctl的workerCount数
decrementWorkerCount();
return null;
}
//工作线程数
int wc = workerCountOf(c);
//核心线程空闲超时设置或当前线程数大于核心线程数
boolean timed = allowCoreThreadTimeOut || wc > corePoolSize;
//1、当前线程数大于最大线程数
//2、获取任务超时且(核心线程设置空闲超时或当前线程大于最大线程)
//3、任务队列为空
if ((wc > maximumPoolSize || (timed && timedOut))
&& (wc > 1 || workQueue.isEmpty())) {
if (compareAndDecrementWorkerCount(c))
return null;
continue;
}
try {
Runnable r = timed ?
workQueue.poll(keepAliveTime, TimeUnit.NANOSECONDS)://获取任务等待指定时间
workQueue.take();//获取任务阻塞直到获取到
if (r != null)
return r;
timedOut = true;
} catch (InterruptedException retry) {
timedOut = false;
}
}
}
|
ThreadPoolExecutor.getTask()
以下情况会返回null,使Work线程退出:
- 工作线程数大于
maximumPoolSize
;
- 线程池已停止(STOP);
- 线程池已关闭(SHUTDOWN)且阻塞队列为空;
- 等待任务超时;
processWorkerExit
runWorker()
中线程最后处理完任务后,调用processWorkerExit
退出逻辑:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
| private void processWorkerExit(Worker w, boolean completedAbruptly) {
//如果线程中断,会抛异常,进入finally,则completedAbruptly为true
if (completedAbruptly) // If abrupt, then workerCount wasn't adjusted
decrementWorkerCount();
final ReentrantLock mainLock = this.mainLock;
mainLock.lock();
try {
//更新完成任务数
completedTaskCount += w.completedTasks;
//移除Worker
workers.remove(w);
} finally {
mainLock.unlock();
}
//尝试终止线程池
tryTerminate();
int c = ctl.get();
//线程池处于RUNNING或SHUTDOWN状态,并未完全停止
if (runStateLessThan(c, STOP)) {
//工作线程非异常退出
if (!completedAbruptly) {
//获取核心线程数
int min = allowCoreThreadTimeOut ? 0 : corePoolSize;
//是否允许核心线程空闲且任务队列不为空,则min为1
if (min == 0 && ! workQueue.isEmpty())
min = 1;
//当前工作线程数>=min返回
if (workerCountOf(c) >= min)
return; // replacement not needed
}
//添加一个没有firstTask的worker
addWorker(null, false);
}
}
|
tryTerminate
尝试终止线程池,在shutdow()
、shutdownNow()
、remove
()中均是通过此方法来终止线程池。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
| final void tryTerminate() {
for (;;) {
int c = ctl.get();
//正在运行
//处于STOP状态
//处于SHUTDOWN状态且阻塞队列不为空
if (isRunning(c) ||
runStateAtLeast(c, TIDYING) ||
(runStateOf(c) == SHUTDOWN && ! workQueue.isEmpty()))
return;
//此处时说明线程池处于STOP状态,或者处于处于SHUTDOWN状态且阻塞队列为空
//如果线程池中还存在线程,则会尝试中断线程
if (workerCountOf(c) != 0) { // Eligible to terminate
interruptIdleWorkers(ONLY_ONE);
return;
}
final ReentrantLock mainLock = this.mainLock;
mainLock.lock();
try {
//线程池已经关闭,等待队列为空,并且工作线程等于0,更新池状态为TIDYING
if (ctl.compareAndSet(c, ctlOf(TIDYING, 0))) {
try {
//线程池关闭以后方法,需自定义实现
terminated();
} finally {
//最后更新线程池状态为TERMINATED
ctl.set(ctlOf(TERMINATED, 0));
//唤醒等待池结束的线程
termination.signalAll();
}
return;
}
} finally {
mainLock.unlock();
}
// else retry on failed CAS
}
}
|
shutdown
启动一个有序的关闭方式,在关闭之前已提交的任务会被执行,但不会接收新任务。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
| public void shutdown() {
final ReentrantLock mainLock = this.mainLock;
mainLock.lock();
try {
//检查关闭权限
checkShutdownAccess();
//修改线程池状态SHUTDOWN
advanceRunState(SHUTDOWN);
//中断空闲工作线程
interruptIdleWorkers();
//关闭线程池调用,需自定义实现
onShutdown(); // hook for ScheduledThreadPoolExecutor
} finally {
mainLock.unlock();
}
//尝试终止线程池
tryTerminate();
}
|
shutdownNow
停止线程池内所有的任务(包括正在执行和正在等待的任务),并返回正在等待执行的任务列表。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
| public List<Runnable> shutdownNow() {
List<Runnable> tasks;
final ReentrantLock mainLock = this.mainLock;
mainLock.lock();
try {
//检查关闭权限
checkShutdownAccess();
//修改线程池状态STOP
advanceRunState(STOP);
//中断所有线程
interruptWorkers();
//移除阻塞队列中的任务
tasks = drainQueue();
} finally {
mainLock.unlock();
}
//尝试终止线程池
tryTerminate();
return tasks;
}
|
shutdcown
和 shutdownNow
的区别:
shutdown
会把当前池状态改为SHUTDOWN
,表示还会继续运行池内已经提交的任务,然后中断所有的空闲工作线程 ;但 shutdownNow
直接把池状态改为STOP
,也就是说不会再运行已存在的任务,然后会中断所有工作线程。